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Univariate ARIMA models can be specified, estimated, checked and used for forecasting in

JMulTi . The relevant features will be described in the following.
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1 The Basic Model

The basic ARIMA (autoregressive integrated moving average) model allowed for in JMulTi

has the form

∆dyt = α1∆
dyt−1 + · · ·+ αp∆

dyt−p + ut + m1ut−1 + · · ·+ mqut−q + CDt, (1)

where yt is a univariate time series variable and ∆ is the differencing operator defined such

that ∆yt = yt − yt−1. Thus, for example for d = 2, ∆dyt = ∆∆yt = yt − 2yt−1 + yt−2.

The vector Dt contains all deterministic terms which may consist of a constant, a linear

trend, seasonal dummy variables as well as user specified other dummy variables, and ut is

an unobservable zero mean white noise process with variance σ2
u. The αi, mj and the vector

C are parameters.

The model (1) is usually referred to as an ARIMA(p, d, q) model. For setting up such a

model the autoregressive order p, the moving average order q and the order of differencing d

have to be specified. The order of differencing can be determined with the help of unit root

tests in the Initial Analysis panel of JMulTi . The orders p and q are sometimes specified

on the basis of the autocorrelations and partial autocorrelations of the time series yt or ∆dyt

(see (Lütkepohl, 2004)). These quantities are also available in the Initial Analysis panel.

In JMulTi also an automatic specification possibility based on model selection criteria is

offered. It is described in the specification section.

When the orders p, d, q are specified and the deterministic terms are chosen, the model can

be estimated by moving to the Estimation panel. When the model has been estimated the

Model Checking and Forecasting panels will be activated and can be used.
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2 Specification of ARMA Orders

Figure 1: ARIMA Model Selection

JMulTi offers the following automatic possibility to specify the autoregressive and moving

average orders of an ARIMA model. This procedure is sometimes known as Hannan-

Rissanen procedure. It is assumed that the order of differencing, d, and the deterministic

terms to include, CD, have been prespecified. Standard deterministic variables should be

selected from the checkboxes, user specified deterministics can be included by denoting

variables as deterministic and selecting them together with y in the selection component.

For simplicity the differenced variable will be denoted by yt, that is, yt stands for ∆dyt if

d > 0. In the first stage an AR(h) model with large order h is fitted by OLS to obtain

residuals ût(h). Then models of the form

yt = α1yt−1 + · · ·+ αnyt−n + ut + m1ût−1(h) + · · ·+ mlût−l(h) + CDt (2)

are fitted for all combinations (n, l) for which n, l ≤ pmax < h. The combination of orders

minimizing

AIC(n, l) = log σ̃2
u(n, l) +

2

T
(n + l),
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HQ(n, l) = log σ̃2
u(n, l) +

2 log log T

T
(n + l)

and

SC(n, l) = log σ̃2
u(n, l) +

log T

T
(n + l)

are determined and shown to the JMulTi user who can then make a choice on the basis of

these recommendations. Here σ̃2
u(n, l) = T−1

∑T
t=1 ût(n, l)2, where ût(n, l) is the residual

from fitting (2) by OLS.

Here the choice of h and pmax may affect the estimated ARMA orders. Hannan and Rissanen

(1982) suggest using h to increase slightly faster than log T . The AR order h needs to be

greater than pmax which in turn may depend on the data of interest.
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3 Estimation

Figure 2: ARIMA Estimation Results

Estimation of ARIMA models is done by Gaussian maximum likelihood (ML) assuming

normal errors. The optimization of the likelihood function requires in general nonlinear op-

timization algorithms. In JMulTi the algorithm by Ansely (1979) is used. The maximization

routine forces the AR coefficients to be invertible. The MA roots will have modulus 1 or

greater. If an MA root is 1, the estimation routine will report a missing value for the MA

coefficient’s standard deviation, t-statistic and p-value. An MA root equal to 1 suggests

that d may have been chosen too large. Starting values and convergence criteria are chosen

automatically.

The estimation output shows the number of iterations needed for convergence. It also shows

some other statistics and the parameter estimates with standard errors, t-statistics and tail

probabilities. The latter quantities cannot be computed in the usual way if one of the moving

average roots is on the unit circle in which case the ARMA process is not invertible and the

usual asymptotic theory does not apply. Such an outcome of the estimation procedure can

also be a result of an overspecified model. This should be checked carefully.

Also the AR roots, that is, the roots of the estimated polynomial

α(z) = 1− α1z − · · · − αpz
p
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and the MA roots, that is, the roots of the polynomial

m(z) = 1−m1z − · · · −mqz
q

are shown with their moduli. It should be noted that SBC stands for the Schwarz criterion

here.
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4 Model Checking

Figure 3: ARIMA Residual Analysis

JMulTi offers a range of tools for checking the adequacy of an ARIMA model. Tests for

residual autocorrelation and nonnormality are offered under Residual Analysis → Diag-

nostic Tests and for plots of residuals, autocorrelations and desity estimates see the Initial

Analysis help.

4.1 Tests for Residual Autocorrelation

The portmanteau test checks the pair of hypotheses

H0 : ρu,1 = · · · = ρu,h = 0 versus H1 : ρu,i 6= 0 for at least one i = 1, . . . , h,

where ρu,i = Corr(ut, ut−i) denotes the autocorrelation coefficients of the residual series. If

the ût are residuals from an estimated ARMA(p, q) model, the portmanteau test statistic is

Qh = T

h∑
j=1

ρ̂2
u,j,

where ρ̂u,j = T−1
∑T

t=j+1 ûs
t û

s
t−j and ûs

t = ût/σ̂u are the standardized estimation residuals.

The test statistic has an approximate χ2(h− p− q)-distribution if the null hypothesis holds.

An adjusted version with potentially better small sample properties was proposed by Ljung

and Box (1978). In JMulTi the following verison is available:

Q∗
h = T 2

h∑
j=1

1

T − j
ρ̂2

u,j ≈ χ2(h− p− q).

4.2 Lomnicki-Jarque-Bera Test for Nonnormality

This test for nonnormality based on the third and fourth moments or, in other words, on

the skewness and kurtosis of a distribution. Denoting by us
t the standardized true model

residuals, i.e., us
t = ut/σu, the test checks the pair of hypotheses

H0 : E(us
t)

3 = 0 and E(us
t)

4 = 3 versus H1 : E(us
t)

3 6= 0 or E(us
t)

4 6= 3,
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that is, it checks whether the third and fourth moments of the standardized residuals are con-

sistent with a standard normal distribution. Denoting the standardized estimation residuals

by ûs
t , the test statistic is

LJB =
T

6

[
T−1

T∑
t=1

(ûs
t)

3

]2

+
T

24

[
T−1

T∑
t=1

(ûs
t)

4 − 3

]2

,

where T−1
∑T

t=1(û
s
t)

3 is a measure for the skewness of the distribution and T−1
∑T

t=1(û
s
t)

4

measures the kurtosis. The test statistic has an asymptotic χ2(2)-distribution if the null

hypothesis is correct and the null hypothesis is rejected if LJB is large.

ARCH-LM Test

In JMulTi the test for neglected conditional heteroskedasticity (ARCH) is based on fitting

an ARCH(q) model to the estimation residuals,

û2
t = β0 + β1û

2
t−1 + · · ·+ βqû

2
t−q + errort, (3)

and checking the null hypothesis

H0 : β1 = · · · = βq = 0 vs. H1 : β1 6= 0 or . . . or βq 6= 0.

Under normality assumptions the LM test statistic is obtained from the coefficient of deter-

mination, R2, of the regression (3):

ARCHLM(q) = TR2.

It has an asymptotic χ2(q) distribution if the null hypothesis of no conditional heteroskedas-

ticity holds (Engle (1982)).
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4.3 ARCH Analysis of Residuals

The ARCH analysis of the residuals is accessible by choosing Model Checking → ARCH

Analysis of Residuals. It offers the same features as the ARCH Analysis accessible in the

main menu. Help details can be found in the Univariate ARCH and GARCH models

chapter.

Figure 4: ARCH Analysis of Residuals
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5 Forecasting

Figure 5: ARIMA Forecasting

ARIMA forecasts in JMulTi are based on Granger and Newbold (1986). The procedure fore-

casts the levels of y by using the estimated AR and MA coefficients in a recursive procedure.

Confidence intervals are based on the assumption of normal errors.

Users should select the forecast horizon and the confidence level. For convenience, the start

date of the forecast plot may be adjusted. By default, the underlying level’s series y is

plotted for all periods where it is available. If there are sample values available also during

the forecast period, then the forecasts may be compared with the actual values.

It should be noted that the forecasting tool automatically extrapolates deterministic series

to the forecasting period. If user specified deterministic variables have been specified, the

routine first checks, whether sample values are available. If not, the last value is carried over

for all periods. All values to be used for the forecast may be changed by manually editing

the table where the determinics are shown.
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